Mean-field Evolution of Fermionic Systems

نویسندگان

  • Niels Benedikter
  • Marcello Porta
  • Benjamin Schlein
چکیده

The mean field limit for systems of many fermions is naturally coupled with a semiclassical limit. This makes the analysis of the mean field regime much more involved, compared with bosonic systems. In this paper, we study the dynamics of initial data close to a Slater determinant, whose reduced one-particle density is an orthogonal projection ωN with the appropriate semiclassical structure. Assuming some regularity of the interaction potential, we show that the evolution of such an initial data remains close to a Slater determinant, with reduced one-particle density given by the solution of the Hartree-Fock equation with initial data ωN . Our result holds for all (semiclassical) times, and gives effective bounds on the rate of the convergence towards the Hartree-Fock dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the supersymmetric nonlinear evolution equations

Supersymmetrization of a nonlinear evolution equation in which the bosonic equation is independent of the fermionic variable and the system is linear in fermionic field goes by the name B-supersymmetrization. This special type of supersymmetrization plays a role in superstring theory. We provide B-supersymmetric extension of a number of quasilinear and fully nonlinear evolution equations and fi...

متن کامل

Pairing mean-field theory for the dynamics of dissociation of molecular Bose-Einstein condensates

We develop a pairing mean-field theory to describe the quantum dynamics of the dissociation of molecular Bose-Einstein condensates into their constituent bosonic or fermionic atoms. We apply the theory to one-, two-, and three-dimensional geometries and analyze the role of dimensionality on the atom production rate as a function of the dissociation energy. As well as determining the populations...

متن کامل

Exact stochastic mean-field approach to the fermionic many-body problem.

We investigate a reformulation of the dynamics of interacting fermion systems in terms of a stochastic extension of time-dependent Hartree-Fock equations. From a path-integral representation of the evolution operator, we show that the exact N-body state can be interpreted as a coherent average over Slater determinants evolving in a random mean-field. The imaginary time propagation is also prese...

متن کامل

Thermalization after an interaction quench in the Hubbard model.

We use nonequilibrium dynamical mean-field theory to study the time evolution of the fermionic Hubbard model after an interaction quench. Both in the weak-coupling and in the strong-coupling regime the system is trapped in quasistationary states on intermediate time scales. These two regimes are separated by a sharp crossover at U(c)dyn=0.8 in units of the bandwidth, where fast thermalization o...

متن کامل

Fermions in spherical field theory

Spherical field theory is a new non-perturbative method for studying quantum field theory. It was introduced in [1] and was used to describe the interactions of scalar boson fields. In this paper we show how to extend the spherical field method to fermionic systems. The central idea of spherical field theory is to treat a d-dimensional system as a set of coupled one-dimensional systems. This is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013